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Calculation and Experimental Verification of Solute
Retention in Liquid Chromatography Using
Binary Eluents

P. K. DE BOKX, P. C. BAARSLAG, and H. P. URBACH
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P.O. BOX 80000, 5600 JA EINDHOVEN, THE NETHERLANDS

Abstract

The chromatographic transport problem is a kinematic wave problem that gen-
crally leads to a set of coupled, nonlinear partial differential equations. In the
linear elution mode of chromatography an approximation can be made which allows
linearization of the set of equations and hence solution by the matrix eigenvalue
decomposition method. To make the solution explicit, an expression for a multi-
component distribution isotherm is required. Generally, Langmuir isotherms are
used for this purpose. In this work a recently published multicomponent isotherm,
that can be derived from first principles, is applied to the problem. For the case
of binary eluents the capacity factors and peak compositions of both system peaks
and analyte peaks are calculated using the elution mode approximation and the
isotherm referred to above. Experimental results pertain to the ion-exchange sep-
aration of alkali ions. A good agreement between calculated and measured quan-
tities is observed. An important consequence of interactions among sample and
eluent constituents for the practice of chromatography lies in the field of indirect

detection. The possibility of universal detection in LC is briefly discussed.

INTRODUCTION

In elution chromatography it is usually assumed that the various com-
ponents of a mixture travel independently through the column, each com-
ponent at its own “‘private” velocity. Thus, a sample consisting of NV analytes
is expected to yield an N-peak chromatogram, the retention times of the
N peaks being determined by the respective distribution coefficients of the
analytes. The distribution coefficient of a given component is assumed to
be equal to the limiting slope at the origin of a plot of the stationary-phase
concentration vs the mobile-phase concentration of that component. That
is to say, retention is assumed to be determined by the individual distri-

bution isotherms of the components (1, 2).
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In a qualitative sense, it has long been recognized that the assumption
of independent motion of the sample components cannot be correct. There
will be interferences among the different sample components on the one
hand and among sample components and eluent components on the other.
In other words, the process of separation is not governed by the individual
isotherms of the sample constituents, but by coupled isotherms describing
the composite behavior of all components in the system, analyte compo-
nents as well as eluent components.

When using a multicomponent isotherm, one expects the stationary-
phase concentration of a given component to be a complicated function of
all concentrations prevailing locally at a given time, which seems to con-
tradict the linear behavior observed in elution chromatography. However,
in the linear elution mode the initial conditions for the separation are
tailored in a very specific way. The amount injected is kept so small that
injection of the sample represents only a minor disturbance of the column
equilibrium. Under these conditions the multicomponent adsorption func-
tion can be expanded to first order in terms of the concentrations of all
the components (3-8). Either mobile-phase, stationary-phase, or total con-
centrations can be used in this expansion. In this way, linearity is preserved
without discarding the mutual interaction effects, as is done in the tradi-
tional description.

Poppe (8) has shown that such a linearized theory can be used successfully
for quantitative predictions in capillary zone electrophoresis where one has
Kohlrausch’s regulating function taking the place of a multicomponent
adsorption isotherm. In elution chromatography, however, the situation is
less favorable. Here, one either has to rely on some questionable assump-
tion, such as that Langmuir parameters do not change on going from a
single component to .. multicomponent mixture [discrepancies between
theory and experiment have been attributed to the shortcomings of the
Langmuir assumptions recently (9)], or one has to resort to actually mea-
suring composite adsorption isotherms. The number of data needed to
describe such a system naturally depends on the number of compositions
at which one wishes to evaluate the adsorbed amounts. This number grows
strongly with the number of components in the system. Due to the very
large number of data needed, there are, to the best of our knowledge, no
multicomponent adsorption data available pertaining to systems that con-
tain more than two components. However, we have shown recently that
for systems that exhibit enthalpy—entropy compensation, a multicomponent
isotherm can be derived from first principles (10-12). Structural parameters
appearing in the isotherm equation do not depend on the composition of
the mixture or on the temperature. Using this isotherm therefore avoids
the need to collect excessively large numbers of data points.
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In this work we derive expressions for the capacity factors of all peaks
appearing in the chromatogram as a function of the composition of a binary
eluent. The consequences of the use of the new multicomponent isotherms
for the calculation of peak retentions and compositions are discussed in
the Theory Section. Our major goal is to compare calculations based on
the linearized model and the new multicomponent isotherms with exper-
iment. Experimental results pertain to the ion-exchange separation of alkali
cations. The first reason for sclecting this particular experimental system
is that it has been the subject of previous studies so that values for the
parameters appearing in the equations are well known. The second reason
is that on using conductivity detection in (single-column) ion chromatog-
raphy, all peaks, including the so-called system peaks that cannot be at-
tributed to a particular solute, can be readily detected. The retention of
system peaks can hence also be compared with model predictions.

THEORY

Formulation of the Transport Problem

Consider an isothermal column of length Z and constant void fraction
€. The mobile phase contains m different components, counting both sam-
ple and eluent constituents. The system is considered to be one-dimensional
and uniform in the direction of flow and has constant interstitial velocity
U. If ¢; and n; denote the molar concentrations of solute { in the mobile
and the stationary phases, respectively, then by neglecting axial diffusion,
the conservation of mass implies that

] d¢; on;
U= + &4 4 (1 - e)—n =0 (1)
dz ot ot

where z measures the distance from the column inlet and ¢ is the time,
with r = 0 corresponding to the beginning of the injection.

By adding the Eqs. (1) corresponding to all components i = 1, 2, ...,
m, it follows that

eU—Z+e—+(1—e)—7=0 )

where C is the total concentration in the mobile phase and N that in the
stationary phase. We shall consider ion-exchange chromatography involv-
ing homovalent ions only. This implies that & is constant and hence by (2)
that C is constant along the lines dz/dt = U. As clarified by Fig. 1, this
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z-(t1 e)U=0

z-t U=0

C=C eluent

zZ ——»

Fi1G. 1. Schematic portrait of the solution of Eq. (2) in the (z,t) plane showing zones of
different total concentration.

leads to three regions in the (z,t) plane with different values for C. Solid
lines in the figure refer to the transport of the total concentration changes,
which have velocity U. Dashed lines refer to changes in composition.
Hence, the reciprocals of their slopes are to be interpreted as chromato-
graphic concentration velocities. Since in elution chromatography the in-
jection time, 1, is always very small, the composition peaks in the region
t>t, + (z/U) are only of interest, and we shall therefore assume that C
is equal to the eluent concentration everywhere:

C = CF = total concentration in the eluent 3)

The conservation laws (1) can be made dimensionless in the following way.
We define x; = ¢,/CE, y, = n/N,v = (Ut — 2)/Z, and { = z/Z. Equation
(1) can then be written as

ay, e Cox .
Qi =% o, =1, .., 4
ar 1 - eN oL ! " )
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In the case of a constant mobile-phase concentration, the multicomponent
isotherms that we study in this paper reduce to
X = Yi . i=1,....,m (5)
2 o (Yis s Ym)Y;

j=1

where the separation factors a;(y,, ..., y) are given by

-1 -TIT) &

E (Fi — Fik)yk} (6)

& (V1e oo Y) = exp{ =T
k=1

where T is the absolute temperature and R is the gas constant, T, is the
compensation temperature of the class of components under consideration,
and the F; are structural parameters describing the interaction between
components { and j. The F; do not depend on the composition of the
mixture nor on the temperature.

It has recently been shown in Refs. 10-12 that for systems exhibiting
enthalpy-entropy compensation, (5) and (6) can be derived from first prin-
ciples. Actually, Egs. (5) and (6) are very similar to the regular-solution
approach (13) [or, for adsorption, the Fowler-Guggenheim approach (/4)]
to multicomponent mixtures, except that in our case the interaction ener-
gies are temperature-dependent. This is a result of the fact that we have
not used the random-mixing approximation in our derivation of the iso-
therm. It is also seen from Eq. (6) that selectivity is totally determined by
the interactions among sorbed species.

We also remark that when the separation factors are chosen to be con-
stants, an assumption usually made in the literature, the isotherms (5)
reduce to the Langmuir type.

By substitution of (5) and (6) into (4), one obtains a coupled system of
nonlinear equations involving only the y,. Using the relation 27, y; = 1,
one of the y, can be eliminated. By elimination of y,, using the relations
oo = 1 and a; = 1/, we finally obtain

ay; 0 — P — —
or + acf,-(y,, cerr Ym-1) = 0, i=1,...m-1 N

where

_ € g (xmi(y)yi
flys s Ymot) = 1-eN =1 (8)

1+ ; (am(¥) — 1y,
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with ¥ = (y), ..., Ym-1) and a,,(¥) is given by (6) with 1 — 273"y,
substituted for y,. Using the chain rule for differentiation, (7) can be
written as

0y _.dy

- + A —— =) 9

>+ AO), )
where A(¥) = (df/dy,; (¥)) is the Jacobian matrix of which the formulas
are given in Appendix II.

In linear elution chromatography the injected amount is very small com-

pared with the eluent concentrations y£, and therefore the equations are
linearized around y&:

9y 8y
- 4 [ A
S A =0 (10)

where AY = A(V£).

Calculation of Peak Retention and Composition

The coupled linear system of Eq. (10) can be solved using the eigenvalue
decomposition of the matrix A£. This method is well known (3-8, 15) and
we shall therefore give only a brief outline. We first assume that the matrix
Af has (m = 1) real, distinct eigenvalues:

A <A < ! (11)
with eigenvectors 7%, k = 1, ..., m — 1. Let A be the diagonal matrix of
eigenvalues. Then

Af = BAB™! (12)

where B is the matrix of which the jth column is identical to the eigenvector
7/. By substituting (12) into (10), it follows after multiplication by B~ that

WA (13)
o1 al
where
W=B"y (14)

Equation (13) implies that the ith component of the vector w is constant
along the ith characteristic, { — \;,7 = constant, in the ({,7) plane. Hence,
the solution w can be readily constructed from the conditions at the inlet
t=0.
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For a system having two degrees of freedom (m = 3), the two charac-
teristic directions corresponding to the two eigenvalues and local w; values
are shown in Fig. 2. The injection time, 7, = (Ut, — z)/Z, is exaggerated
for reasons of clarity. In the limit 7,—0, two peaks occur by the overlapping
of parallel characteristics at 1 = O and 7 = 7.

For a system of m components, counting both sample and analyte con-
stituents, there are m — 1 peaks. By analogy with the case m = 3, it
follows that if ¥ = (y{, ..., y5_)) and 3% = (y¢, ..., yE_)) are the mole
fractions of the first m — 1 components in the feed and the eluent,
respectively, and if wf = (wf, ..., wl_)) and W& = (wf, ..., wE ) are
the corresponding w vectors, that the w vector in the jth peak is given by

who= (wf, ..o wE, whwhy, o whl) (15)

The corresponding y vector in the jth peak is given by

5 = B (16)
P2
[
W1E ,W2E W1E,W2F
wE w, E
P1
w,Fw,E
T
e W1F,W F
W1E ,W2E

{—a

FIG. 2. Schematic portrait of the solution in the ({,) plane of the eluticn development of a
single analyte in a binary eluent.
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We now briefly consider the case that two or more eigenvalues of A‘
coincide. This situation has occurred in one of the experiments discussed
below. If the (m — 1) X (m — 1) matrix A% has some coinciding eigen-
values, but still has m — 1 linearly independent eigenvectors, then the
diagonalization (12) is still valid, with A now a diagonal matrix having a
number of identical diagonal elements. However, when Af does not have
m — 1 linearly independent eigenvectors, the diagonalization of Eq. (13)
does not exist, but instead there exists a so-called Jordan decomposition
(16). Suppose that \! < --- < A" are the distinct eigenvalues of A¥ and let
s; be the multiplicity of A*. Then there exists an invertible matrix B and a
matrix J such that

Af = BJB! (17)

The matrix J is given by

J= R (18)

J . = (19)
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The number of submatrices of J, as indicated in Eq. (19) is equal to the
number of linearly independent eigenvectors corresponding to A* minus 1.
For simplicity, we shall henceforth assume that every A* has only one
eigenvector. The general case can be treated analogously.

As before, we define w by (13) and, analogously to (12), we now obtain

aw aw
Rl (20)

Using the assumption that A! has only one eigenvector, the first s, equations
of (20) are

aw, ow,  ow, .
My g 1s=is=s -1
aT a( ag
Wy M 21
aT al h )

Using the conditions at the inlet { = 0, it follows that for 1 =i =< s, we
have

w, = wf for A't < { and for At > Alr, + {
=wF  for{<ANT<\7, +( (22)

Analogously, one finds for k = 2, ..., r, that for all indices i with
Skots; + 1 =i = 2, s there holds

w; = wk for M7 < { and for A\t > N, + (
= wf for { < Mt < N, + ( (23)

In the limit 1,0, a number of r peaks P* with k = 1, ..., r arise. The
w corresponding to the kth peak is given by

Il
<
~n
=3
=
\g|

Lo

+

IA

IA
M~
R

whk

= wf  for all other i (24)

The corresponding y vectors are obtained from y*x = B’
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p2
[
W (E.W,E W, E EW,E w5
E
) w1E woE wyE
P1
w,Fw,F wgE
Te 1F WaF Wab
F W E W E w,E
W
E
W
§—=

FiG. 3. Schematic portrait of the solution in the ({.r) plane of the elution development of a
single analyte in a ternary eluent for the case where there are two distinct eigenvalucs.

Figure 3 shows the characteristic directions and the w vectors for the
case that m = 4 and that A” has two distinct eigenvalues X\, < \, such that
A, has multiplicity 2 (s, = 2, s, = 1). Then two peaks occur with com-
positions as given in (22) and (23).

As remarked above, the y values are obtained from the w values using
the transformation B. It is known from chromatographical practice that
analyte components are present in a single peak. In fact, separation is
possible for this very reason. However obvious it may seem to the chro-
matographer, the observation that an analyte can only be in one peak is
not immediately clear from the analysis above. In fact, one can construct
many functions f,(¥) in (7) for which the corresponding linearized system
(10) fails to have this property. Therefore, one could formulate a condition
on any meaningful isotherm based on the property that every analyte should
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be present in only one peak. The isotherm of Egs. (5) and (6) is shown
to satisfy this condition. In fact, it can be proven that every isotherm of
the form (5) with arbitrary functions o (y;, ..., y..—,) always has the desired
property. The interested reader is referred to Appendix I for a proof.

EXPERIMENTAL

Apparatus and Materials

A PU4100 binary liquid chromatograph, equipped with a column-oven
accessory (Philips Scientific, Cambridge, UK), was used throughout this
work. The instrument was adapted to suit the requirements of ion-exchange
chromatography of cations as described elsewhere (/). In all experiments
an LDC Conductomonitor Mark 1II (LDC/Milton Roy, Riviera Beach,
Florida, USA) conductivity detector was utilized. Fractions could be col-
lected using a Model 201 fraction collector (Gilson, Villiers le Bel, France).
A Philips PU6000 Integration System together with a P3202 computer were
used for data capture and processing. The determination of sodium was
carried out using a PU SP9 atomic absorption/emission spectrometer (Phil-
ips Scientific, Cambridge, UK).

All experiments were performed using a polystyrene-divinylbenzene-
based strong cation exchanger (IC PAK C, Millipore/Waters, Milford,
Massachusetts, USA), which was purchased prepacked in a 50 mm, 4.6
mm i.d. column. The analytical column was always used in conjunction
with a guard column obtained from the same supplier. All salts used were
nitrates of suprapur or a comparable quality (Merck, Darmstadt, FRG).
Salts were dried overnight at 80°C and cooled to ambient in a desiccator
before weighing. High-purity de-ionized water was used to make up the
solution. Samples were made from 1000 ppm stock solutions stored in
quartz flasks.

Procedures

The chromatographic system was characterized with respect to system
dead volume, column void fraction, and the column exchange capacity.
The system dead volume and the column void fraction were measured by
injecting a sample containing Li at a concentration slightly different from
the Li eluent, without and with the column installed, respectively. The
system dead volume:volume in tubing was determined to be 0.216 = 0.003
mL, the void fraction € was 0.42 = 0.01. The ion-exchange capacity was
determined by frontal chromatography, measuring the net time needed to
replace Li by Rb. The ion-exchange capacity of the column was 7.25 *
0.05 pmol.
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In the course of an experiment, both the analytical column and the guard
column were first flushed for at least 1 h with a 0.1 M (total concentration)
solution of a binary eluent having a preselected concentration ratio. The
chromatographic system was allowed to equilibrate overnight with an
eluent of the same concentration ratio, but now at a total concentration
of 2 mM. It was found that long equilibration times (>>1 h) were necessary
to allow measurement at the most sensitive conductivity setting (0.1 pS,
10 mV output). Repeated injections were then made for several column
temperatures. The total analyte concentration was always kept below 5%
of the total eluent concentration to conform as closely to the elution mode
approximation as was permitted by detectability. All capacity factors re-
ported here are average values from at least three injections. The whole
procedure was then repeated for a following eluent composition. Option-
ally, samples were collected to examine peak compositions using atomic
spectrometry.

RESULTS AND DISCUSSION

In Fig. 4, two chromatograms are shown. The left-hand figure corre-
sponds to the injection of a sodium sample in a 0.6 mM Li/1.4 mM Rb
eluent; the right-hand figure corresponds to the injection of a potassium
sample in the same eluent. In both chromatograms three peaks are dis-
cerned. In Fig. 5 the capacity ratios of these peaks have been plotted as
a function of the Li/Rb ratio in the eluent. Drawn lines in the figures have
been calculated using the elution-mode approximation as described in the
theoretical section. From both figures it is evident that peak cross-overs
occur on changing the eluent composition. For the case of potassium in-
jection, the cross-over is very close to the origin of the mole fraction axis.
For sodium there is a clear cross-over located at a Rb mole fraction of
about 0.45.

It is the aim of this discussion to elucidate how the retention of all peaks
in the chromatogram can be calculated, to calculate which peak(s) contain
the injected analyte, and to compare the calculated result with experiment.
Including the inert diluent water, we have four components. Water is not
adsorbed. As stated in the Theory Section, there will always be a trivial
system peak at r = 0, (i.e., t = z/U in the (z,¢) plane), representing the
difference in total ionic concentration between the eluent and the injected
sample. Among the remaining three components that is one relation, the
electroneutrality condition, which leaves us with two degrees of freedom.
This implies that we expect three peaks in the chromatogram: one at a
position corresponding to the column hold-up time (t = 0) and two peaks
showing retention. Referring to Fig. 4, this is indeed what is observed
experimentally.
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Fi1G. 5. Capacity factors of system and analyte peaks resulting from injection of Na (left-

hand side) and K (right-hand side) as a function of the composition of a Li/Rb eluent. Total

eluent concentration: 2.0 mM. Temperature: 295 K. Flow: 1.0 mL/min. Drawn lines in the
figure have been calculated using the elution-mode approximation.

We now proceed to the calculation of the retention and the composition
of the nontrivial peaks. Numerical values for the structural parameters
needed in the calculations (the F; of Eq. 6 are taken from earlier work.
For the sake of completeness, the set of f; values used is shown in Table
1. We are now equipped to solve Eq. (5). According to the discussion in
the Theory Section, the following steps have to be taken to solve the
problem:

(1) Calculate y; by numerically solving Eq. (5)

(2) Set up matrix Af by the appropriate substitution of y; and f; values

(3) Solve the eigenvalue problem. For our simple 2 X 2 problem this is,
of course, tantamount to solving a quadratic equation
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TABLE 1
Values for the Structural Parameters f,
Used in the Calculations

14 q 2(1(qu - th Ro)
Li Li 12.11
Li Na 9.95
Li K 491
Li Rb 3.36
Na Na 6.33
Na K 3.49
Na Rb 2.75
K K 1.70
K Rb 1.18

At this point one is in a position to calculate capacity factors. In our
formulation of the problem, the capacity factors are related to the eigen-
values according to

-1 (25)

To calculate peak compositions, one additionally has to:

(4) Calculate the Jordan decomposition A = BJB !

(5) Determine the w values of the different zones

(6) Calculate ¥ values for the different zones fromy = B~'w

(7) Calculate c values for the different zones by substitution in the mul-
ticomponent isotherm

In Fig. 6 the calculated compositions of the two nontrivial peaks obtained
upon injection of sodium are plotted as a function of the Rb mole fraction
in a Rb/Li eluent. It is seen that the injected analyte (thick solid line) is
always present in only one peak. To a chromatographer this may seem
self-evident as this is the situation he is familiar with from daily practice.
Here, we wish to stress again that there is no a priori reason to discard
the possible presence of an analyte component in several peaks. To in-
vestigate the predicted results, fractions have been collected in the case of
sodium injection. These fractions were analyzed for their sodium content
using flame emission spectrometry. The results are indicated in the figure.
It is seen that the predicted reversal of system and analyte peaks is com-
pletely corroborated by the experimental results. To illustrate the tem-
perature independence of the structural parameters, capacity factors re-
ferring to an elevated temperature are compared with experiment in Fig. 7.
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| | 1 |
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FiG. 7. Capacity factors of system and analyte peaks resulting from injection of Na (left-
hand side) and K (right-hand side) as a function of the composition of a binary Li/Rb eluent.
Temperature: 322 K. Other conditions: Same as Fig. 3.

The importance of knowing the composite adsorption behavior should
not be underestimated. The close connection between mutual interferences
and indirect detection has been pioneered in the work of Crommen, Schill,
and coworker (/7, 18). The aim of indirect detection is to determine the
concentration of an analyte that has no inherent detectability by measuring
the change in concentration of a detectable eluent component. It follows
from the theoretical section that this should always be possible when there
are interferences between the analyte of interest and the eluent compo-
nents. Understanding the details of response in indirect detection is not
really possible without a thorough analysis, however. To illustrate this point
let us refer to Fig. 6 for the case of a binary eluent. It is seen that the Li
and Rb concentrations in the peak(s) rise and fall dramatically when the
eluent composition approaches the value corresponding to the cross-over
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point. There seems to be a vertical assymptote for the mobile-phase con-
centrations of the eluent components.

To explain this, it should be noted that «t the cross-over point the two
eigenvalues A! and \? of Af coincide and tha: A# has only one eigenvector
there. We shall write 8 = A' — N2, then 8—0 on approaching the cross-
over point. The matrix B in Eq. (12) becomes singular in this limit; in fact,

the elements of the matrix B~' are of the order 1/ near the cross-over
point:

1
B;' = 0(—) (26)
3
If we write the feed state in y-space as
7F = ¥ + kA (27)

where kAY is the perturbation of the eluent and k > 0 is a small parameter.
Then we have

WF =B 'JF = W + kB~ 'Ay (28)

so that in particular: w{ — w¥ = O(k/3). Since W = (wf,w¥§), it follows
that

yb = Bwh = Bwt + (w{ — wf)Be!

= yE + 0(%) (29)

Hence, if 50 and « is kept fixed, |y/|—, which proves the existence
of a vertical assymptote at the cross-over point. Physically, the mobile-
and stationary-phase concentrations are, of course, bounded. It is to be
understood that the restrictions on the magnitude of the first-order per-
turbation that can be allowed in a physically realistic calculation become
more stringent as one gets nearer to the cross-over point. The large ex-
cursions of eluent component concentrations in the peaks as shown in Fig.
6, however, are in good agreement with the experimental results of Ref.
18. We could now take the discussion on indirect detection a bit further.
In LC a universal detector, such as the flame-ionization detector in GC,
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is much sought after. The main problem hampering the introduction of a
universal LC detector is the presence of the liquid eluent that has to be
removed before the detection. However, one could also consider the pres-
ence of the eluent as an advantage rather than as a drawback. The om-
nipresent interferences between eluent and sample species in LC systems
offer an equally omnipresent opportunity for indirect detection. One could
argue that the universal LC detector has been available from the outset.
We just do not know how to exploit it properly through our lack of knowl-
edge of the distribution isotherms that govern our separations.

To summarize, the retention times of all peaks and their compositions
can be accurately calculated if and only if an isotherm describing the com-
posite behavior of all species in the system is known.

APPENDIX |

A general observation in chromatography is that a given analyte is pres-
ent in only one peak. This is true for every set of values of the concentra-
tions in the eluent and, therefore, it seems that this experimental fact
corresponds to a characteristic property that any meaningful distribution
isotherm should have. In fact, as we shall show, the property that an analyte
is present is only one peak can be derived from the conservation laws for
any choice of the multicomponent adsorption isotherm when:

(1) The total concentration in the stationary phase is constant
(2) The conservation laws are linearized around the elution state

We shall first derive a necessary and sufficient condition on the isotherms
in order that every analyte is always present in only one peak. Then we
shall prove that when (1) and (2) hold, every isotherm satisfies this con-
dition.

Let the analyte of interest be the component which is eliminated from
the conservation laws using the relation 2, y; = 1, that is, let the num-
bering of the components be such that y, corresponds to the analyte.
Because the observation that the analyte is present in one peak is inde-
pendent of the number of peaks (mathematically speaking, independent
of the number of distinct eigenvalues of the matrix Af), we shall consider
the general case discussed in the theoretical section, which allows for mul-
tiple eigenvalues. Let \' < -+ < \* be the distinct eigenvalues of A with
multiplicities s, ..., s,, respectively. Furthermore, put o, = 2%, 5;, k =
1, ..., r and o, = 1. Then it follows from Eq. (24) that the composition
of peak P* in the w-space can be concisely written as

W= wE Y (wh - whyE (AL1)

i=op_ +1
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where ¢ = (0, ..., 0, 1, 0, ..., 0) denotes the ith unit vector. The
corresponding y-vector is given by

™ = Bw™ = jE + > (wF - w,E)B’ (AL2)

i=g,_ +1

where b’ = Beé'. In the case that there are m — 1 distinct eigenvalues, we
have s; = 1 for all j, hence o, = k. Furthermore, in that case Be* = 7¥,
the eigenvector corresponding to \*, so that Eq. (AI.2) becomes

y* = yE + (W — wh)F (AL3)

In the general case of multiple eigenvalues however, only a subset of the
vectors b’ are eigenvectors of AE. Since the analyte is not present in the
eluent, one has

m-1
> yE=1 (AL4)
j=1

Furthermore, the analyte is not present in the kth peak if and only if
m-1
2=1 (ALS)
j=1

On combining Eqgs. (Al.4) and (ALS), it follows from Eq. (AL.2) that a
given analyte is present in only one peak if and only if

Uk

2w = wh m_f b = (ALS6)

i=u,_+1

for all but one k € {1, ..., r}. Furthermore, this property holds indepen-
dently of the concentrations in the eluent and the feed sample, provided
Eq. (AL.6) not only holds for all but one k, but also for all values of
wf — wE. From this we conclude that the analyte is always present in one
peak if and only if one has

m-—1
X bi=0 foro, +1=si=sog (AL7)
=1
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for all but one k € {1, ..., r}. In particular, when Af has m — 1 distinct
eigenvalues, Eq. (AL.7) simply becomes

m-1

m—1
b= r=0 (AL8)
j=1

j=1

for all but one k € {1, ..., r}. Hence, in this case, the vector (1, ...,
1) is orthogonal to all but one eigenvector, say 7'. This is in turn equivalent
to the statement that (1, ..., 1) is an eigenvector of the transpose (A*)7 of
A’ corresponding to the eigenvalue N\

1 0
(ADT =M - | =" (AL9)
1 0

In the general case of Eq. (AL.7), it follows that (1, ..., 1) is orthogonal
to all linear spaces generated by {b'; o_; < i = oy} except for one, say for
k = . Since these linear spaces are identical to the kernel of the matrices
(AE — A%, and since the linear space which is orthogonal to the kernels
of all (A — N, k # [ is identical to the kernel of ((Af)T — N)¥, we
conclude that (1, ..., 1) is in the latter space, that is:

1 0
(AE)T — Nyf -] = |- (AL10)
1 0

It is seen that (AI.10) reduces to (AI.9) when s, = 1, i.e., when AF has
m — 1 distinct eigenvalues. To summarize, we have:

Ifthe (m — 1) x (m — 1) matrix AF obtained after eliminating the analyte
of interest has r distinct eigenvalues, then there are r peaks. Let \' < --+ <
N be the distinct eigenvalues of AE and let s, ..., s, be their respective
multiplicities. Then the given analyte is always present in one peak for all
concentrations in the eluent and in the feed, ij’ and only if there is | €
{1, ..., r} such that Eq. (AL.10) holds. In that case the analyte is present in
the Ith peak, corresponding to the eigenvalue \'.

Let the isotherms be written as

% = a,(yn ...,y,,,)i—){, 1=<ij=m (AL11)

i ]
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where x; = ¢;/C and y; = n,/N are the mole fractions of the ith component
in the mobile and the stationary phase, respectively. Compatability requires
that the separation factors satisfy

a; = 1, Q0 = Oy (Al.12)

Apart from these compatibility conditions, the separation functions are
arbitrary functions of y,, ..., y,, and the following derivations are therefore
valid for any isotherm. Equation (Al.11) implies

Xy Yi
. i Viy ooes y,,,)y (AI.13)

m m

If all sites are always occupied, we have
Sx=yy=1 (Al.14)
i=1 i=1

By adding all the Eqs. (AI.13), using (Al.14) one obtains

m m-—1

2o S =1+ S o) - U (ALLY)

xm k=1

where 3 = (yy, ..., ¥m_1) and a,,(¥) is obtained from o,(yi, ... , ym) by
substitution of y,, = 1 — 7' y,. Since x; = ¢,/C, it follows by comparing
Egs. (4), (11) and (AI.15) that

f(y = 5\, mf.a"“'(y)y : (AL16)
I+ k§=:l [amk(y.) - I]yk

where v = (1 — €)/e. We write

m-1

V=1+ Y [am — 1w (AL17)
k=1
Then Eq. (AI.16) implies

m-1
1 - E Yi
k=1

o (AL18)

m-1 _._C
;fi(y)—m 1 -
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Henceforl =j=m — 1:

o ofi _ C B m-1 v, _
21 a_y,(Y) = INVOY {V(y) + [1 - E. yk] ay,-(y)} (AL19)

Now, if y,, corresponds to an analyte, then the eluent state y£ satisfies
m~1
2 yE=0 (AL.20)
i=1

Hence, Eq. (AL.19) impliesfor l = j=m ~ 1:

m—1 B_f, By C
2 509 = T W6 (AL21)

Since the right-hand side of Eq. (AI.21) is independent of j, it follows that
Eq. (Al.21) is equivalent to the statement that the vector (1, ..., 1) is
an eigenvector of the matrix (Af)”, where A% = (df./dy,; (¥%)). The ei-
genvalue is given by the right-hand side of Eq. (Al.21):

C 1

A = — m—l—
vN .
> au(VE)yE
k=1

(AL22)

We therefore conclude that a given analyte is always present in only one
peak irrespective of the choice of the mathematical form of the multicom-
ponent isotherm provided that the conservation laws are linearized around
the elution state and all adsorption sites are permanently occupied.

APPENDIX I

In this Appendix, expressions for the elements of the matrix A;(y) =
of./dy; (¥) are given. For the isotherm considered in this paper, the sep-
aration factors o are functions of all y;(cf. Eq. 6):

B —(1 - T/T)
5 - e [T
RT (AIL1)

m-1
X |:Em - ij + 2 (Ek - ij + 17]-," - Em)yk:l}

k=1
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where y,, has again been eliminated. Using

() =

<
vN

m_lami(y)yi (AIIZ)

I+ g} [on(¥) = 1]yi

we obtain for the partial derivatives:

of,

£ Va,,,,ﬁ,-/ - ((XMI - l)OL,,,iy,- .

1 - T/T,

(y) =

ay, vN ‘/2

RT

m-—1
(Fm/' - F," + Fim - me)<1 - E yk)a"'"yi
k=1

X

1 -TT, &

V2

m-1
2 (Fim = Fiun + Fyj — F)oum Yo,y

RT

o (AIL3)

where V has been defined in Eq. (Al.17). Note that the two terms of
(AIL.3) with factor (1 — T/T,)/RT are due to the y-dependence of the o;;.
These terms are absent when ideal (Langmuir) adsorption behavior is

assumed.
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